Some checks failed
continuous-integration/drone/push Build is failing
1. 课程学习进度追踪
- 新增 UserCourseProgress 和 UserMaterialProgress 模型
- 新增 /api/v1/progress/* 进度追踪 API
- 更新 admin.py 使用真实课程完成率数据
2. 路由权限检查完善
- 新增前端 permissionChecker.ts 权限检查工具
- 更新 router/guard.ts 实现团队和课程权限验证
- 新增后端 permission_service.py
3. AI 陪练音频转文本
- 新增 speech_recognition.py 语音识别服务
- 新增 /api/v1/speech/* API
- 更新 ai-practice-coze.vue 支持语音输入
4. 双人对练报告生成
- 更新 practice_room_service.py 添加报告生成功能
- 新增 /rooms/{room_code}/report API
- 更新 duo-practice-report.vue 调用真实 API
5. 学习提醒推送
- 新增 notification_service.py 通知服务
- 新增 scheduler_service.py 定时任务服务
- 支持钉钉、企微、站内消息推送
6. 智能学习推荐
- 新增 recommendation_service.py 推荐服务
- 新增 /api/v1/recommendations/* API
- 支持错题、能力、进度、热门多维度推荐
7. 安全问题修复
- DEBUG 默认值改为 False
- 添加 SECRET_KEY 安全警告
- 新增 check_security_settings() 检查函数
8. 证书 PDF 生成
- 更新 certificate_service.py 添加 PDF 生成
- 添加 weasyprint、Pillow、qrcode 依赖
- 更新下载 API 支持 PDF 和 PNG 格式
324 lines
11 KiB
Python
324 lines
11 KiB
Python
"""
|
||
双人对练分析服务
|
||
|
||
功能:
|
||
- 分析双人对练对话
|
||
- 生成双方评估报告
|
||
- 对话标注和建议
|
||
"""
|
||
import json
|
||
import logging
|
||
from dataclasses import dataclass, field
|
||
from typing import Any, Dict, List, Optional
|
||
|
||
from app.services.ai.ai_service import AIService
|
||
from app.services.ai.prompts.duo_practice_prompts import SYSTEM_PROMPT, USER_PROMPT
|
||
|
||
logger = logging.getLogger(__name__)
|
||
|
||
|
||
@dataclass
|
||
class UserEvaluation:
|
||
"""用户评估结果"""
|
||
user_name: str
|
||
role_name: str
|
||
total_score: int
|
||
dimensions: Dict[str, Dict[str, Any]]
|
||
highlights: List[str]
|
||
improvements: List[Dict[str, str]]
|
||
|
||
|
||
@dataclass
|
||
class DuoPracticeAnalysisResult:
|
||
"""双人对练分析结果"""
|
||
# 整体评估
|
||
interaction_quality: int = 0
|
||
scene_restoration: int = 0
|
||
overall_comment: str = ""
|
||
|
||
# 用户A评估
|
||
user_a_evaluation: Optional[UserEvaluation] = None
|
||
|
||
# 用户B评估
|
||
user_b_evaluation: Optional[UserEvaluation] = None
|
||
|
||
# 对话标注
|
||
dialogue_annotations: List[Dict[str, Any]] = field(default_factory=list)
|
||
|
||
# AI 元数据
|
||
raw_response: str = ""
|
||
ai_provider: str = ""
|
||
ai_model: str = ""
|
||
ai_latency_ms: int = 0
|
||
|
||
|
||
class DuoPracticeAnalysisService:
|
||
"""
|
||
双人对练分析服务
|
||
|
||
使用示例:
|
||
```python
|
||
service = DuoPracticeAnalysisService()
|
||
result = await service.analyze(
|
||
scene_name="销售场景",
|
||
scene_background="客户咨询产品",
|
||
role_a_name="销售顾问",
|
||
role_b_name="顾客",
|
||
user_a_name="张三",
|
||
user_b_name="李四",
|
||
dialogue_history=dialogue_list,
|
||
duration_seconds=300,
|
||
total_turns=20
|
||
)
|
||
```
|
||
"""
|
||
|
||
MODULE_CODE = "duo_practice_analysis"
|
||
|
||
async def analyze(
|
||
self,
|
||
scene_name: str,
|
||
scene_background: str,
|
||
role_a_name: str,
|
||
role_b_name: str,
|
||
role_a_description: str,
|
||
role_b_description: str,
|
||
user_a_name: str,
|
||
user_b_name: str,
|
||
dialogue_history: List[Dict[str, Any]],
|
||
duration_seconds: int,
|
||
total_turns: int,
|
||
db: Any = None
|
||
) -> DuoPracticeAnalysisResult:
|
||
"""
|
||
分析双人对练
|
||
|
||
Args:
|
||
scene_name: 场景名称
|
||
scene_background: 场景背景
|
||
role_a_name: 角色A名称
|
||
role_b_name: 角色B名称
|
||
role_a_description: 角色A描述
|
||
role_b_description: 角色B描述
|
||
user_a_name: 用户A名称
|
||
user_b_name: 用户B名称
|
||
dialogue_history: 对话历史列表
|
||
duration_seconds: 对练时长(秒)
|
||
total_turns: 总对话轮次
|
||
db: 数据库会话
|
||
|
||
Returns:
|
||
DuoPracticeAnalysisResult: 分析结果
|
||
"""
|
||
try:
|
||
logger.info(f"开始双人对练分析: {scene_name}, 轮次={total_turns}")
|
||
|
||
# 格式化对话历史
|
||
dialogue_text = self._format_dialogue_history(dialogue_history)
|
||
|
||
# 创建 AI 服务
|
||
ai_service = AIService(module_code=self.MODULE_CODE, db_session=db)
|
||
|
||
# 构建用户提示词
|
||
user_prompt = USER_PROMPT.format(
|
||
scene_name=scene_name,
|
||
scene_background=scene_background or "未设置",
|
||
role_a_name=role_a_name,
|
||
role_b_name=role_b_name,
|
||
role_a_description=role_a_description or f"扮演{role_a_name}角色",
|
||
role_b_description=role_b_description or f"扮演{role_b_name}角色",
|
||
user_a_name=user_a_name,
|
||
user_b_name=user_b_name,
|
||
dialogue_history=dialogue_text,
|
||
duration_seconds=duration_seconds,
|
||
total_turns=total_turns
|
||
)
|
||
|
||
# 调用 AI
|
||
messages = [
|
||
{"role": "system", "content": SYSTEM_PROMPT},
|
||
{"role": "user", "content": user_prompt}
|
||
]
|
||
|
||
ai_response = await ai_service.chat(
|
||
messages=messages,
|
||
model="gemini-3-flash-preview", # 使用快速模型
|
||
temperature=0.3,
|
||
prompt_name="duo_practice_analysis"
|
||
)
|
||
|
||
logger.info(f"AI 分析完成: provider={ai_response.provider}, latency={ai_response.latency_ms}ms")
|
||
|
||
# 解析 AI 输出
|
||
result = self._parse_analysis_result(
|
||
ai_response.content,
|
||
user_a_name=user_a_name,
|
||
user_b_name=user_b_name,
|
||
role_a_name=role_a_name,
|
||
role_b_name=role_b_name
|
||
)
|
||
|
||
# 填充 AI 元数据
|
||
result.raw_response = ai_response.content
|
||
result.ai_provider = ai_response.provider
|
||
result.ai_model = ai_response.model
|
||
result.ai_latency_ms = ai_response.latency_ms
|
||
|
||
return result
|
||
|
||
except Exception as e:
|
||
logger.error(f"双人对练分析失败: {e}", exc_info=True)
|
||
# 返回空结果
|
||
return DuoPracticeAnalysisResult(
|
||
overall_comment=f"分析失败: {str(e)}"
|
||
)
|
||
|
||
def _format_dialogue_history(self, dialogues: List[Dict[str, Any]]) -> str:
|
||
"""格式化对话历史"""
|
||
lines = []
|
||
for d in dialogues:
|
||
speaker = d.get("role_name") or d.get("speaker", "未知")
|
||
content = d.get("content", "")
|
||
seq = d.get("sequence", 0)
|
||
lines.append(f"[{seq}] {speaker}:{content}")
|
||
return "\n".join(lines)
|
||
|
||
def _parse_analysis_result(
|
||
self,
|
||
ai_output: str,
|
||
user_a_name: str,
|
||
user_b_name: str,
|
||
role_a_name: str,
|
||
role_b_name: str
|
||
) -> DuoPracticeAnalysisResult:
|
||
"""解析 AI 输出"""
|
||
result = DuoPracticeAnalysisResult()
|
||
|
||
try:
|
||
# 尝试提取 JSON
|
||
json_str = ai_output
|
||
|
||
# 如果输出包含 markdown 代码块,提取其中的 JSON
|
||
if "```json" in ai_output:
|
||
start = ai_output.find("```json") + 7
|
||
end = ai_output.find("```", start)
|
||
json_str = ai_output[start:end].strip()
|
||
elif "```" in ai_output:
|
||
start = ai_output.find("```") + 3
|
||
end = ai_output.find("```", start)
|
||
json_str = ai_output[start:end].strip()
|
||
|
||
data = json.loads(json_str)
|
||
|
||
# 解析整体评估
|
||
overall = data.get("overall_evaluation", {})
|
||
result.interaction_quality = overall.get("interaction_quality", 0)
|
||
result.scene_restoration = overall.get("scene_restoration", 0)
|
||
result.overall_comment = overall.get("overall_comment", "")
|
||
|
||
# 解析用户A评估
|
||
user_a_data = data.get("user_a_evaluation", {})
|
||
if user_a_data:
|
||
result.user_a_evaluation = UserEvaluation(
|
||
user_name=user_a_data.get("user_name", user_a_name),
|
||
role_name=user_a_data.get("role_name", role_a_name),
|
||
total_score=user_a_data.get("total_score", 0),
|
||
dimensions=user_a_data.get("dimensions", {}),
|
||
highlights=user_a_data.get("highlights", []),
|
||
improvements=user_a_data.get("improvements", [])
|
||
)
|
||
|
||
# 解析用户B评估
|
||
user_b_data = data.get("user_b_evaluation", {})
|
||
if user_b_data:
|
||
result.user_b_evaluation = UserEvaluation(
|
||
user_name=user_b_data.get("user_name", user_b_name),
|
||
role_name=user_b_data.get("role_name", role_b_name),
|
||
total_score=user_b_data.get("total_score", 0),
|
||
dimensions=user_b_data.get("dimensions", {}),
|
||
highlights=user_b_data.get("highlights", []),
|
||
improvements=user_b_data.get("improvements", [])
|
||
)
|
||
|
||
# 解析对话标注
|
||
result.dialogue_annotations = data.get("dialogue_annotations", [])
|
||
|
||
except json.JSONDecodeError as e:
|
||
logger.warning(f"JSON 解析失败: {e}")
|
||
result.overall_comment = "AI 输出格式异常,请重试"
|
||
except Exception as e:
|
||
logger.error(f"解析分析结果失败: {e}")
|
||
result.overall_comment = f"解析失败: {str(e)}"
|
||
|
||
return result
|
||
|
||
def result_to_dict(self, result: DuoPracticeAnalysisResult) -> Dict[str, Any]:
|
||
"""将结果转换为字典(用于 API 响应)"""
|
||
return {
|
||
"overall_evaluation": {
|
||
"interaction_quality": result.interaction_quality,
|
||
"scene_restoration": result.scene_restoration,
|
||
"overall_comment": result.overall_comment
|
||
},
|
||
"user_a_evaluation": {
|
||
"user_name": result.user_a_evaluation.user_name,
|
||
"role_name": result.user_a_evaluation.role_name,
|
||
"total_score": result.user_a_evaluation.total_score,
|
||
"dimensions": result.user_a_evaluation.dimensions,
|
||
"highlights": result.user_a_evaluation.highlights,
|
||
"improvements": result.user_a_evaluation.improvements
|
||
} if result.user_a_evaluation else None,
|
||
"user_b_evaluation": {
|
||
"user_name": result.user_b_evaluation.user_name,
|
||
"role_name": result.user_b_evaluation.role_name,
|
||
"total_score": result.user_b_evaluation.total_score,
|
||
"dimensions": result.user_b_evaluation.dimensions,
|
||
"highlights": result.user_b_evaluation.highlights,
|
||
"improvements": result.user_b_evaluation.improvements
|
||
} if result.user_b_evaluation else None,
|
||
"dialogue_annotations": result.dialogue_annotations,
|
||
"ai_metadata": {
|
||
"provider": result.ai_provider,
|
||
"model": result.ai_model,
|
||
"latency_ms": result.ai_latency_ms
|
||
}
|
||
}
|
||
|
||
|
||
# ==================== 全局实例 ====================
|
||
|
||
duo_practice_analysis_service = DuoPracticeAnalysisService()
|
||
|
||
|
||
# ==================== 便捷函数 ====================
|
||
|
||
async def analyze_duo_practice(
|
||
scene_name: str,
|
||
scene_background: str,
|
||
role_a_name: str,
|
||
role_b_name: str,
|
||
role_a_description: str,
|
||
role_b_description: str,
|
||
user_a_name: str,
|
||
user_b_name: str,
|
||
dialogue_history: List[Dict[str, Any]],
|
||
duration_seconds: int,
|
||
total_turns: int,
|
||
db: Any = None
|
||
) -> DuoPracticeAnalysisResult:
|
||
"""便捷函数:分析双人对练"""
|
||
return await duo_practice_analysis_service.analyze(
|
||
scene_name=scene_name,
|
||
scene_background=scene_background,
|
||
role_a_name=role_a_name,
|
||
role_b_name=role_b_name,
|
||
role_a_description=role_a_description,
|
||
role_b_description=role_b_description,
|
||
user_a_name=user_a_name,
|
||
user_b_name=user_b_name,
|
||
dialogue_history=dialogue_history,
|
||
duration_seconds=duration_seconds,
|
||
total_turns=total_turns,
|
||
db=db
|
||
)
|