feat: 添加双人对练功能
Some checks failed
continuous-integration/drone/push Build is failing

- 新增数据库迁移脚本 (practice_rooms, practice_room_messages)
- 新增后端 API: 房间创建/加入/消息同步/报告生成
- 新增前端页面: 入口页/对练房间/报告页
- 新增 AI 双人评估服务和提示词
This commit is contained in:
yuliang_guo
2026-01-28 15:20:03 +08:00
parent fc299ed7b7
commit b6aea2e23d
14 changed files with 4195 additions and 0 deletions

View File

@@ -0,0 +1,323 @@
"""
双人对练分析服务
功能:
- 分析双人对练对话
- 生成双方评估报告
- 对话标注和建议
"""
import json
import logging
from dataclasses import dataclass, field
from typing import Any, Dict, List, Optional
from app.services.ai.ai_service import AIService
from app.services.ai.prompts.duo_practice_prompts import SYSTEM_PROMPT, USER_PROMPT
logger = logging.getLogger(__name__)
@dataclass
class UserEvaluation:
"""用户评估结果"""
user_name: str
role_name: str
total_score: int
dimensions: Dict[str, Dict[str, Any]]
highlights: List[str]
improvements: List[Dict[str, str]]
@dataclass
class DuoPracticeAnalysisResult:
"""双人对练分析结果"""
# 整体评估
interaction_quality: int = 0
scene_restoration: int = 0
overall_comment: str = ""
# 用户A评估
user_a_evaluation: Optional[UserEvaluation] = None
# 用户B评估
user_b_evaluation: Optional[UserEvaluation] = None
# 对话标注
dialogue_annotations: List[Dict[str, Any]] = field(default_factory=list)
# AI 元数据
raw_response: str = ""
ai_provider: str = ""
ai_model: str = ""
ai_latency_ms: int = 0
class DuoPracticeAnalysisService:
"""
双人对练分析服务
使用示例:
```python
service = DuoPracticeAnalysisService()
result = await service.analyze(
scene_name="销售场景",
scene_background="客户咨询产品",
role_a_name="销售顾问",
role_b_name="顾客",
user_a_name="张三",
user_b_name="李四",
dialogue_history=dialogue_list,
duration_seconds=300,
total_turns=20
)
```
"""
MODULE_CODE = "duo_practice_analysis"
async def analyze(
self,
scene_name: str,
scene_background: str,
role_a_name: str,
role_b_name: str,
role_a_description: str,
role_b_description: str,
user_a_name: str,
user_b_name: str,
dialogue_history: List[Dict[str, Any]],
duration_seconds: int,
total_turns: int,
db: Any = None
) -> DuoPracticeAnalysisResult:
"""
分析双人对练
Args:
scene_name: 场景名称
scene_background: 场景背景
role_a_name: 角色A名称
role_b_name: 角色B名称
role_a_description: 角色A描述
role_b_description: 角色B描述
user_a_name: 用户A名称
user_b_name: 用户B名称
dialogue_history: 对话历史列表
duration_seconds: 对练时长(秒)
total_turns: 总对话轮次
db: 数据库会话
Returns:
DuoPracticeAnalysisResult: 分析结果
"""
try:
logger.info(f"开始双人对练分析: {scene_name}, 轮次={total_turns}")
# 格式化对话历史
dialogue_text = self._format_dialogue_history(dialogue_history)
# 创建 AI 服务
ai_service = AIService(module_code=self.MODULE_CODE, db_session=db)
# 构建用户提示词
user_prompt = USER_PROMPT.format(
scene_name=scene_name,
scene_background=scene_background or "未设置",
role_a_name=role_a_name,
role_b_name=role_b_name,
role_a_description=role_a_description or f"扮演{role_a_name}角色",
role_b_description=role_b_description or f"扮演{role_b_name}角色",
user_a_name=user_a_name,
user_b_name=user_b_name,
dialogue_history=dialogue_text,
duration_seconds=duration_seconds,
total_turns=total_turns
)
# 调用 AI
messages = [
{"role": "system", "content": SYSTEM_PROMPT},
{"role": "user", "content": user_prompt}
]
ai_response = await ai_service.chat(
messages=messages,
model="gemini-3-flash-preview", # 使用快速模型
temperature=0.3,
prompt_name="duo_practice_analysis"
)
logger.info(f"AI 分析完成: provider={ai_response.provider}, latency={ai_response.latency_ms}ms")
# 解析 AI 输出
result = self._parse_analysis_result(
ai_response.content,
user_a_name=user_a_name,
user_b_name=user_b_name,
role_a_name=role_a_name,
role_b_name=role_b_name
)
# 填充 AI 元数据
result.raw_response = ai_response.content
result.ai_provider = ai_response.provider
result.ai_model = ai_response.model
result.ai_latency_ms = ai_response.latency_ms
return result
except Exception as e:
logger.error(f"双人对练分析失败: {e}", exc_info=True)
# 返回空结果
return DuoPracticeAnalysisResult(
overall_comment=f"分析失败: {str(e)}"
)
def _format_dialogue_history(self, dialogues: List[Dict[str, Any]]) -> str:
"""格式化对话历史"""
lines = []
for d in dialogues:
speaker = d.get("role_name") or d.get("speaker", "未知")
content = d.get("content", "")
seq = d.get("sequence", 0)
lines.append(f"[{seq}] {speaker}{content}")
return "\n".join(lines)
def _parse_analysis_result(
self,
ai_output: str,
user_a_name: str,
user_b_name: str,
role_a_name: str,
role_b_name: str
) -> DuoPracticeAnalysisResult:
"""解析 AI 输出"""
result = DuoPracticeAnalysisResult()
try:
# 尝试提取 JSON
json_str = ai_output
# 如果输出包含 markdown 代码块,提取其中的 JSON
if "```json" in ai_output:
start = ai_output.find("```json") + 7
end = ai_output.find("```", start)
json_str = ai_output[start:end].strip()
elif "```" in ai_output:
start = ai_output.find("```") + 3
end = ai_output.find("```", start)
json_str = ai_output[start:end].strip()
data = json.loads(json_str)
# 解析整体评估
overall = data.get("overall_evaluation", {})
result.interaction_quality = overall.get("interaction_quality", 0)
result.scene_restoration = overall.get("scene_restoration", 0)
result.overall_comment = overall.get("overall_comment", "")
# 解析用户A评估
user_a_data = data.get("user_a_evaluation", {})
if user_a_data:
result.user_a_evaluation = UserEvaluation(
user_name=user_a_data.get("user_name", user_a_name),
role_name=user_a_data.get("role_name", role_a_name),
total_score=user_a_data.get("total_score", 0),
dimensions=user_a_data.get("dimensions", {}),
highlights=user_a_data.get("highlights", []),
improvements=user_a_data.get("improvements", [])
)
# 解析用户B评估
user_b_data = data.get("user_b_evaluation", {})
if user_b_data:
result.user_b_evaluation = UserEvaluation(
user_name=user_b_data.get("user_name", user_b_name),
role_name=user_b_data.get("role_name", role_b_name),
total_score=user_b_data.get("total_score", 0),
dimensions=user_b_data.get("dimensions", {}),
highlights=user_b_data.get("highlights", []),
improvements=user_b_data.get("improvements", [])
)
# 解析对话标注
result.dialogue_annotations = data.get("dialogue_annotations", [])
except json.JSONDecodeError as e:
logger.warning(f"JSON 解析失败: {e}")
result.overall_comment = "AI 输出格式异常,请重试"
except Exception as e:
logger.error(f"解析分析结果失败: {e}")
result.overall_comment = f"解析失败: {str(e)}"
return result
def result_to_dict(self, result: DuoPracticeAnalysisResult) -> Dict[str, Any]:
"""将结果转换为字典(用于 API 响应)"""
return {
"overall_evaluation": {
"interaction_quality": result.interaction_quality,
"scene_restoration": result.scene_restoration,
"overall_comment": result.overall_comment
},
"user_a_evaluation": {
"user_name": result.user_a_evaluation.user_name,
"role_name": result.user_a_evaluation.role_name,
"total_score": result.user_a_evaluation.total_score,
"dimensions": result.user_a_evaluation.dimensions,
"highlights": result.user_a_evaluation.highlights,
"improvements": result.user_a_evaluation.improvements
} if result.user_a_evaluation else None,
"user_b_evaluation": {
"user_name": result.user_b_evaluation.user_name,
"role_name": result.user_b_evaluation.role_name,
"total_score": result.user_b_evaluation.total_score,
"dimensions": result.user_b_evaluation.dimensions,
"highlights": result.user_b_evaluation.highlights,
"improvements": result.user_b_evaluation.improvements
} if result.user_b_evaluation else None,
"dialogue_annotations": result.dialogue_annotations,
"ai_metadata": {
"provider": result.ai_provider,
"model": result.ai_model,
"latency_ms": result.ai_latency_ms
}
}
# ==================== 全局实例 ====================
duo_practice_analysis_service = DuoPracticeAnalysisService()
# ==================== 便捷函数 ====================
async def analyze_duo_practice(
scene_name: str,
scene_background: str,
role_a_name: str,
role_b_name: str,
role_a_description: str,
role_b_description: str,
user_a_name: str,
user_b_name: str,
dialogue_history: List[Dict[str, Any]],
duration_seconds: int,
total_turns: int,
db: Any = None
) -> DuoPracticeAnalysisResult:
"""便捷函数:分析双人对练"""
return await duo_practice_analysis_service.analyze(
scene_name=scene_name,
scene_background=scene_background,
role_a_name=role_a_name,
role_b_name=role_b_name,
role_a_description=role_a_description,
role_b_description=role_b_description,
user_a_name=user_a_name,
user_b_name=user_b_name,
dialogue_history=dialogue_history,
duration_seconds=duration_seconds,
total_turns=total_turns,
db=db
)

View File

@@ -0,0 +1,207 @@
"""
双人对练评估提示词模板
功能:评估双人角色扮演对练的表现
"""
# ==================== 元数据 ====================
PROMPT_META = {
"name": "duo_practice_analysis",
"display_name": "双人对练评估",
"description": "评估双人角色扮演对练中双方的表现",
"module": "kaopeilian",
"variables": [
"scene_name", "scene_background",
"role_a_name", "role_b_name",
"role_a_description", "role_b_description",
"user_a_name", "user_b_name",
"dialogue_history",
"duration_seconds", "total_turns"
],
"version": "1.0.0",
"author": "kaopeilian-team",
}
# ==================== 系统提示词 ====================
SYSTEM_PROMPT = """你是一位资深的销售培训专家和沟通教练,擅长评估角色扮演对练的表现。
你需要观察双人对练的对话记录,分别对两位参与者的表现进行专业评估。
评估原则:
1. 客观公正,基于对话内容给出评价
2. 突出亮点,指出不足
3. 给出具体、可操作的改进建议
4. 考虑角色特点,评估角色代入度
输出格式要求:
- 必须返回有效的 JSON 格式
- 分数范围 0-100
- 建议具体可行"""
# ==================== 用户提示词模板 ====================
USER_PROMPT = """# 双人对练评估任务
## 场景信息
- **场景名称**{scene_name}
- **场景背景**{scene_background}
## 角色设置
### {role_a_name}
- **扮演者**{user_a_name}
- **角色描述**{role_a_description}
### {role_b_name}
- **扮演者**{user_b_name}
- **角色描述**{role_b_description}
## 对练数据
- **对练时长**{duration_seconds}
- **总对话轮次**{total_turns}
## 对话记录
{dialogue_history}
---
## 评估要求
请按以下 JSON 格式输出评估结果:
```json
{{
"overall_evaluation": {{
"interaction_quality": 85,
"scene_restoration": 80,
"overall_comment": "整体评价..."
}},
"user_a_evaluation": {{
"user_name": "{user_a_name}",
"role_name": "{role_a_name}",
"total_score": 85,
"dimensions": {{
"role_immersion": {{
"score": 85,
"comment": "角色代入度评价..."
}},
"communication": {{
"score": 80,
"comment": "沟通表达能力评价..."
}},
"professional_knowledge": {{
"score": 75,
"comment": "专业知识运用评价..."
}},
"response_quality": {{
"score": 82,
"comment": "回应质量评价..."
}},
"goal_achievement": {{
"score": 78,
"comment": "目标达成度评价..."
}}
}},
"highlights": [
"亮点1...",
"亮点2..."
],
"improvements": [
{{
"issue": "问题描述",
"suggestion": "改进建议",
"example": "示例话术"
}}
]
}},
"user_b_evaluation": {{
"user_name": "{user_b_name}",
"role_name": "{role_b_name}",
"total_score": 82,
"dimensions": {{
"role_immersion": {{
"score": 80,
"comment": "角色代入度评价..."
}},
"communication": {{
"score": 85,
"comment": "沟通表达能力评价..."
}},
"professional_knowledge": {{
"score": 78,
"comment": "专业知识运用评价..."
}},
"response_quality": {{
"score": 80,
"comment": "回应质量评价..."
}},
"goal_achievement": {{
"score": 75,
"comment": "目标达成度评价..."
}}
}},
"highlights": [
"亮点1...",
"亮点2..."
],
"improvements": [
{{
"issue": "问题描述",
"suggestion": "改进建议",
"example": "示例话术"
}}
]
}},
"dialogue_annotations": [
{{
"sequence": 1,
"speaker": "{role_a_name}",
"tags": ["good_opening"],
"comment": "开场白自然得体"
}},
{{
"sequence": 3,
"speaker": "{role_b_name}",
"tags": ["needs_improvement"],
"comment": "可以更主动表达需求"
}}
]
}}
```
请基于对话内容,给出客观、专业的评估。"""
# ==================== 维度说明 ====================
DIMENSION_DESCRIPTIONS = {
"role_immersion": "角色代入度:是否完全进入角色,语言风格、态度是否符合角色设定",
"communication": "沟通表达:语言是否清晰、逻辑是否通顺、表达是否得体",
"professional_knowledge": "专业知识:是否展现出角色应有的专业素养和知识储备",
"response_quality": "回应质量:对对方发言的回应是否及时、恰当、有针对性",
"goal_achievement": "目标达成:是否朝着对练目标推进,是否达成预期效果"
}
# ==================== 对话标签 ====================
DIALOGUE_TAGS = {
# 正面标签
"good_opening": "开场良好",
"active_listening": "积极倾听",
"empathy": "共情表达",
"professional": "专业表现",
"good_closing": "结束得体",
"creative_response": "创意回应",
"problem_solving": "问题解决",
# 需改进标签
"needs_improvement": "需要改进",
"off_topic": "偏离主题",
"too_passive": "过于被动",
"lack_detail": "缺乏细节",
"missed_opportunity": "错失机会",
"unclear_expression": "表达不清"
}

View File

@@ -0,0 +1,514 @@
"""
双人对练房间服务
功能:
- 房间创建、加入、退出
- 房间状态管理
- 消息广播
- 对练结束处理
"""
import logging
import random
import string
from datetime import datetime
from typing import Optional, List, Dict, Any
from sqlalchemy.ext.asyncio import AsyncSession
from sqlalchemy import select, update, and_
from sqlalchemy.orm import selectinload
from app.models.practice_room import PracticeRoom, PracticeRoomMessage
from app.models.practice import PracticeDialogue, PracticeSession
from app.models.user import User
logger = logging.getLogger(__name__)
class PracticeRoomService:
"""双人对练房间服务"""
# 房间状态常量
STATUS_WAITING = "waiting" # 等待加入
STATUS_READY = "ready" # 准备就绪
STATUS_PRACTICING = "practicing" # 对练中
STATUS_COMPLETED = "completed" # 已完成
STATUS_CANCELED = "canceled" # 已取消
# 消息类型常量
MSG_TYPE_CHAT = "chat" # 聊天消息
MSG_TYPE_SYSTEM = "system" # 系统消息
MSG_TYPE_JOIN = "join" # 加入消息
MSG_TYPE_LEAVE = "leave" # 离开消息
MSG_TYPE_START = "start" # 开始消息
MSG_TYPE_END = "end" # 结束消息
def __init__(self, db: AsyncSession):
self.db = db
# ==================== 房间管理 ====================
async def create_room(
self,
host_user_id: int,
scene_id: Optional[int] = None,
scene_name: Optional[str] = None,
scene_type: Optional[str] = None,
scene_background: Optional[str] = None,
role_a_name: str = "销售顾问",
role_b_name: str = "顾客",
role_a_description: Optional[str] = None,
role_b_description: Optional[str] = None,
host_role: str = "A",
room_name: Optional[str] = None
) -> PracticeRoom:
"""
创建对练房间
Args:
host_user_id: 房主用户ID
scene_id: 场景ID可选
scene_name: 场景名称
scene_type: 场景类型
scene_background: 场景背景
role_a_name: 角色A名称
role_b_name: 角色B名称
role_a_description: 角色A描述
role_b_description: 角色B描述
host_role: 房主选择的角色A或B
room_name: 房间名称
Returns:
PracticeRoom: 创建的房间对象
"""
# 生成唯一的6位房间码
room_code = await self._generate_unique_room_code()
# 创建房间
room = PracticeRoom(
room_code=room_code,
room_name=room_name or f"{scene_name or '双人对练'}房间",
scene_id=scene_id,
scene_name=scene_name,
scene_type=scene_type,
scene_background=scene_background,
role_a_name=role_a_name,
role_b_name=role_b_name,
role_a_description=role_a_description,
role_b_description=role_b_description,
host_user_id=host_user_id,
host_role=host_role,
status=self.STATUS_WAITING
)
self.db.add(room)
await self.db.commit()
await self.db.refresh(room)
logger.info(f"创建房间成功: room_code={room_code}, host_user_id={host_user_id}")
return room
async def join_room(
self,
room_code: str,
user_id: int
) -> PracticeRoom:
"""
加入房间
Args:
room_code: 房间码
user_id: 用户ID
Returns:
PracticeRoom: 房间对象
Raises:
ValueError: 房间不存在、已满或状态不允许加入
"""
# 查询房间
room = await self.get_room_by_code(room_code)
if not room:
raise ValueError("房间不存在或已过期")
# 检查是否是房主(房主重新进入)
if room.host_user_id == user_id:
return room
# 检查房间状态
if room.status not in [self.STATUS_WAITING, self.STATUS_READY]:
raise ValueError("房间已开始对练或已结束,无法加入")
# 检查是否已满
if room.guest_user_id and room.guest_user_id != user_id:
raise ValueError("房间已满")
# 加入房间
room.guest_user_id = user_id
room.status = self.STATUS_READY
await self.db.commit()
await self.db.refresh(room)
# 发送系统消息
await self._add_system_message(room.id, f"用户已加入房间", self.MSG_TYPE_JOIN, user_id)
logger.info(f"用户加入房间: room_code={room_code}, user_id={user_id}")
return room
async def leave_room(
self,
room_code: str,
user_id: int
) -> bool:
"""
离开房间
Args:
room_code: 房间码
user_id: 用户ID
Returns:
bool: 是否成功离开
"""
room = await self.get_room_by_code(room_code)
if not room:
return False
# 如果是房主离开,取消房间
if room.host_user_id == user_id:
room.status = self.STATUS_CANCELED
await self._add_system_message(room.id, "房主离开,房间已关闭", self.MSG_TYPE_LEAVE, user_id)
# 如果是嘉宾离开
elif room.guest_user_id == user_id:
room.guest_user_id = None
room.status = self.STATUS_WAITING
await self._add_system_message(room.id, "对方已离开房间", self.MSG_TYPE_LEAVE, user_id)
else:
return False
await self.db.commit()
logger.info(f"用户离开房间: room_code={room_code}, user_id={user_id}")
return True
async def start_practice(
self,
room_code: str,
user_id: int
) -> PracticeRoom:
"""
开始对练(仅房主可操作)
Args:
room_code: 房间码
user_id: 用户ID必须是房主
Returns:
PracticeRoom: 房间对象
"""
room = await self.get_room_by_code(room_code)
if not room:
raise ValueError("房间不存在")
if room.host_user_id != user_id:
raise ValueError("只有房主可以开始对练")
if room.status != self.STATUS_READY:
raise ValueError("房间未就绪,请等待对方加入")
room.status = self.STATUS_PRACTICING
room.started_at = datetime.now()
await self.db.commit()
await self.db.refresh(room)
# 发送开始消息
await self._add_system_message(room.id, "对练开始!", self.MSG_TYPE_START)
logger.info(f"对练开始: room_code={room_code}")
return room
async def end_practice(
self,
room_code: str,
user_id: int
) -> PracticeRoom:
"""
结束对练
Args:
room_code: 房间码
user_id: 用户ID
Returns:
PracticeRoom: 房间对象
"""
room = await self.get_room_by_code(room_code)
if not room:
raise ValueError("房间不存在")
if room.status != self.STATUS_PRACTICING:
raise ValueError("对练未在进行中")
# 计算时长
if room.started_at:
duration = (datetime.now() - room.started_at).total_seconds()
room.duration_seconds = int(duration)
room.status = self.STATUS_COMPLETED
room.ended_at = datetime.now()
await self.db.commit()
await self.db.refresh(room)
# 发送结束消息
await self._add_system_message(room.id, "对练结束!", self.MSG_TYPE_END)
logger.info(f"对练结束: room_code={room_code}, duration={room.duration_seconds}s")
return room
# ==================== 消息管理 ====================
async def send_message(
self,
room_id: int,
user_id: int,
content: str,
role_name: Optional[str] = None
) -> PracticeRoomMessage:
"""
发送聊天消息
Args:
room_id: 房间ID
user_id: 发送者ID
content: 消息内容
role_name: 角色名称
Returns:
PracticeRoomMessage: 消息对象
"""
# 获取当前消息序号
sequence = await self._get_next_sequence(room_id)
message = PracticeRoomMessage(
room_id=room_id,
user_id=user_id,
message_type=self.MSG_TYPE_CHAT,
content=content,
role_name=role_name,
sequence=sequence
)
self.db.add(message)
# 更新房间统计
room = await self.get_room_by_id(room_id)
if room:
room.total_turns += 1
user_role = room.get_user_role(user_id)
if user_role == "A":
room.role_a_turns += 1
elif user_role == "B":
room.role_b_turns += 1
await self.db.commit()
await self.db.refresh(message)
return message
async def get_messages(
self,
room_id: int,
since_sequence: int = 0,
limit: int = 100
) -> List[PracticeRoomMessage]:
"""
获取房间消息用于SSE轮询
Args:
room_id: 房间ID
since_sequence: 从该序号之后开始获取
limit: 最大数量
Returns:
List[PracticeRoomMessage]: 消息列表
"""
result = await self.db.execute(
select(PracticeRoomMessage)
.where(
and_(
PracticeRoomMessage.room_id == room_id,
PracticeRoomMessage.sequence > since_sequence
)
)
.order_by(PracticeRoomMessage.sequence)
.limit(limit)
)
return list(result.scalars().all())
async def get_all_messages(self, room_id: int) -> List[PracticeRoomMessage]:
"""
获取房间所有消息
Args:
room_id: 房间ID
Returns:
List[PracticeRoomMessage]: 消息列表
"""
result = await self.db.execute(
select(PracticeRoomMessage)
.where(PracticeRoomMessage.room_id == room_id)
.order_by(PracticeRoomMessage.sequence)
)
return list(result.scalars().all())
# ==================== 查询方法 ====================
async def get_room_by_code(self, room_code: str) -> Optional[PracticeRoom]:
"""根据房间码获取房间"""
result = await self.db.execute(
select(PracticeRoom).where(
and_(
PracticeRoom.room_code == room_code,
PracticeRoom.is_deleted == False
)
)
)
return result.scalar_one_or_none()
async def get_room_by_id(self, room_id: int) -> Optional[PracticeRoom]:
"""根据ID获取房间"""
result = await self.db.execute(
select(PracticeRoom).where(
and_(
PracticeRoom.id == room_id,
PracticeRoom.is_deleted == False
)
)
)
return result.scalar_one_or_none()
async def get_user_rooms(
self,
user_id: int,
status: Optional[str] = None,
limit: int = 20
) -> List[PracticeRoom]:
"""获取用户的房间列表"""
query = select(PracticeRoom).where(
and_(
(PracticeRoom.host_user_id == user_id) | (PracticeRoom.guest_user_id == user_id),
PracticeRoom.is_deleted == False
)
)
if status:
query = query.where(PracticeRoom.status == status)
query = query.order_by(PracticeRoom.created_at.desc()).limit(limit)
result = await self.db.execute(query)
return list(result.scalars().all())
async def get_room_with_users(self, room_code: str) -> Optional[Dict[str, Any]]:
"""获取房间详情(包含用户信息)"""
room = await self.get_room_by_code(room_code)
if not room:
return None
# 获取用户信息
host_user = None
guest_user = None
if room.host_user_id:
result = await self.db.execute(
select(User).where(User.id == room.host_user_id)
)
host_user = result.scalar_one_or_none()
if room.guest_user_id:
result = await self.db.execute(
select(User).where(User.id == room.guest_user_id)
)
guest_user = result.scalar_one_or_none()
return {
"room": room,
"host_user": host_user,
"guest_user": guest_user,
"host_role_name": room.get_role_name(room.host_role),
"guest_role_name": room.get_role_name("B" if room.host_role == "A" else "A") if guest_user else None
}
# ==================== 辅助方法 ====================
async def _generate_unique_room_code(self) -> str:
"""生成唯一的6位房间码"""
for _ in range(10): # 最多尝试10次
code = ''.join(random.choices(string.ascii_uppercase + string.digits, k=6))
# 排除容易混淆的字符
code = code.replace('0', 'X').replace('O', 'Y').replace('I', 'Z').replace('1', 'W')
# 检查是否已存在
existing = await self.get_room_by_code(code)
if not existing:
return code
raise ValueError("无法生成唯一房间码,请稍后重试")
async def _get_next_sequence(self, room_id: int) -> int:
"""获取下一个消息序号"""
result = await self.db.execute(
select(PracticeRoomMessage.sequence)
.where(PracticeRoomMessage.room_id == room_id)
.order_by(PracticeRoomMessage.sequence.desc())
.limit(1)
)
last_seq = result.scalar_one_or_none()
return (last_seq or 0) + 1
async def _add_system_message(
self,
room_id: int,
content: str,
msg_type: str,
user_id: Optional[int] = None
) -> PracticeRoomMessage:
"""添加系统消息"""
sequence = await self._get_next_sequence(room_id)
message = PracticeRoomMessage(
room_id=room_id,
user_id=user_id,
message_type=msg_type,
content=content,
sequence=sequence
)
self.db.add(message)
await self.db.commit()
await self.db.refresh(message)
return message
# ==================== 便捷函数 ====================
async def create_practice_room(
db: AsyncSession,
host_user_id: int,
**kwargs
) -> PracticeRoom:
"""便捷函数:创建房间"""
service = PracticeRoomService(db)
return await service.create_room(host_user_id, **kwargs)
async def join_practice_room(
db: AsyncSession,
room_code: str,
user_id: int
) -> PracticeRoom:
"""便捷函数:加入房间"""
service = PracticeRoomService(db)
return await service.join_room(room_code, user_id)