feat: 实现 KPL 系统功能改进计划
Some checks failed
continuous-integration/drone/push Build is failing

1. 课程学习进度追踪
   - 新增 UserCourseProgress 和 UserMaterialProgress 模型
   - 新增 /api/v1/progress/* 进度追踪 API
   - 更新 admin.py 使用真实课程完成率数据

2. 路由权限检查完善
   - 新增前端 permissionChecker.ts 权限检查工具
   - 更新 router/guard.ts 实现团队和课程权限验证
   - 新增后端 permission_service.py

3. AI 陪练音频转文本
   - 新增 speech_recognition.py 语音识别服务
   - 新增 /api/v1/speech/* API
   - 更新 ai-practice-coze.vue 支持语音输入

4. 双人对练报告生成
   - 更新 practice_room_service.py 添加报告生成功能
   - 新增 /rooms/{room_code}/report API
   - 更新 duo-practice-report.vue 调用真实 API

5. 学习提醒推送
   - 新增 notification_service.py 通知服务
   - 新增 scheduler_service.py 定时任务服务
   - 支持钉钉、企微、站内消息推送

6. 智能学习推荐
   - 新增 recommendation_service.py 推荐服务
   - 新增 /api/v1/recommendations/* API
   - 支持错题、能力、进度、热门多维度推荐

7. 安全问题修复
   - DEBUG 默认值改为 False
   - 添加 SECRET_KEY 安全警告
   - 新增 check_security_settings() 检查函数

8. 证书 PDF 生成
   - 更新 certificate_service.py 添加 PDF 生成
   - 添加 weasyprint、Pillow、qrcode 依赖
   - 更新下载 API 支持 PDF 和 PNG 格式
This commit is contained in:
yuliang_guo
2026-01-30 14:22:35 +08:00
parent 9793013a56
commit 64f5d567fa
66 changed files with 18067 additions and 14330 deletions

View File

@@ -0,0 +1,157 @@
"""
智能学习推荐 API
"""
from typing import List, Optional
from fastapi import APIRouter, Depends, Query
from sqlalchemy.ext.asyncio import AsyncSession
from pydantic import BaseModel
from app.core.database import get_db
from app.api.deps import get_current_user
from app.models.user import User
from app.services.recommendation_service import RecommendationService
router = APIRouter()
# ============ Schemas ============
class CourseRecommendation(BaseModel):
"""课程推荐响应"""
course_id: int
course_name: str
category: Optional[str] = None
cover_image: Optional[str] = None
description: Optional[str] = None
progress_percent: Optional[float] = None
student_count: Optional[int] = None
source: Optional[str] = None
reason: Optional[str] = None
class KnowledgePointRecommendation(BaseModel):
"""知识点推荐响应"""
knowledge_point_id: int
name: str
description: Optional[str] = None
type: Optional[str] = None
course_id: int
mistake_count: Optional[int] = None
reason: Optional[str] = None
class RecommendationResponse(BaseModel):
"""推荐响应"""
code: int = 200
message: str = "success"
data: dict
# ============ API Endpoints ============
@router.get("/courses", response_model=RecommendationResponse)
async def get_course_recommendations(
limit: int = Query(10, ge=1, le=50, description="推荐数量"),
include_reasons: bool = Query(True, description="是否包含推荐理由"),
db: AsyncSession = Depends(get_db),
current_user: User = Depends(get_current_user),
):
"""
获取个性化课程推荐
推荐策略:
- 基于错题分析推荐相关课程
- 基于能力评估推荐弱项课程
- 基于学习进度推荐未完成课程
- 基于热门程度推荐高人气课程
"""
service = RecommendationService(db)
recommendations = await service.get_recommendations(
user_id=current_user.id,
limit=limit,
include_reasons=include_reasons,
)
return RecommendationResponse(
code=200,
message="获取推荐成功",
data={
"recommendations": recommendations,
"total": len(recommendations),
}
)
@router.get("/knowledge-points", response_model=RecommendationResponse)
async def get_knowledge_point_recommendations(
limit: int = Query(5, ge=1, le=20, description="推荐数量"),
db: AsyncSession = Depends(get_db),
current_user: User = Depends(get_current_user),
):
"""
获取知识点复习推荐
基于错题记录推荐需要重点复习的知识点
"""
service = RecommendationService(db)
recommendations = await service.get_knowledge_point_recommendations(
user_id=current_user.id,
limit=limit,
)
return RecommendationResponse(
code=200,
message="获取推荐成功",
data={
"recommendations": recommendations,
"total": len(recommendations),
}
)
@router.get("/summary")
async def get_recommendation_summary(
db: AsyncSession = Depends(get_db),
current_user: User = Depends(get_current_user),
):
"""
获取推荐摘要
返回各类推荐的概要信息
"""
service = RecommendationService(db)
# 获取各类推荐
all_recs = await service.get_recommendations(
user_id=current_user.id,
limit=20,
include_reasons=True,
)
# 按来源分类统计
source_counts = {}
for rec in all_recs:
source = rec.get("source", "other")
source_counts[source] = source_counts.get(source, 0) + 1
# 获取知识点推荐
kp_recs = await service.get_knowledge_point_recommendations(
user_id=current_user.id,
limit=5,
)
return {
"code": 200,
"message": "success",
"data": {
"total_recommendations": len(all_recs),
"source_breakdown": {
"mistake_based": source_counts.get("mistake", 0),
"ability_based": source_counts.get("ability", 0),
"progress_based": source_counts.get("progress", 0),
"popular": source_counts.get("popular", 0),
},
"weak_knowledge_points": len(kp_recs),
"top_recommendation": all_recs[0] if all_recs else None,
}
}